MISP is a novel Plk1 substrate required for proper spindle orientation and mitotic progression
نویسندگان
چکیده
Precise positioning of the mitotic spindle determines the correct cell division axis and is crucial for organism development. Spindle positioning is mediated through a cortical machinery by capturing astral microtubules, thereby generating pushing/pulling forces at the cell cortex. However, the molecular link between these two structures remains elusive. Here we describe a previously uncharacterized protein, MISP (C19orf21), as a substrate of Plk1 that is required for correct mitotic spindle positioning. MISP is an actin-associated protein throughout the cell cycle. MISP depletion led to an impaired metaphase-to-anaphase transition, which depended on phosphorylation by Plk1. Loss of MISP induced mitotic defects including spindle misorientation accompanied by shortened astral microtubules. Furthermore, we find that MISP formed a complex with and regulated the cortical distribution of the +TIP binding protein p150(glued), a subunit of the dynein-dynactin complex. We propose that Plk1 phosphorylates MISP, thus stabilizing cortical and astral microtubule attachments required for proper mitotic spindle positioning.
منابع مشابه
MicroRNA-181a/b: Novel biomarkers to stratify breast cancer patients for PARPi treatment
Positioning of the cell division plane is critically important for tissue morphogenesis and architecture. 1 it is therefore not surprising that mitotic spindle orientation must be tightly regulated in living tissues, a phenomenon that is also observed in cells cultured in vitro. Because of the amenability of cultured cells to molecular and physical manipulation, many investigators have used suc...
متن کاملMISP: The missing link between extracellular matrix and astral microtubules
Positioning of the cell division plane is critically important for tissue morphogenesis and architecture. 1 it is therefore not surprising that mitotic spindle orientation must be tightly regulated in living tissues, a phenomenon that is also observed in cells cultured in vitro. Because of the amenability of cultured cells to molecular and physical manipulation, many investigators have used suc...
متن کاملMammalian Neurogenesis Requires Treacle-Plk1 for Precise Control of Spindle Orientation, Mitotic Progression, and Maintenance of Neural Progenitor Cells
The cerebral cortex is a specialized region of the brain that processes cognitive, motor, somatosensory, auditory, and visual functions. Its characteristic architecture and size is dependent upon the number of neurons generated during embryogenesis and has been postulated to be governed by symmetric versus asymmetric cell divisions, which mediate the balance between progenitor cell maintenance ...
متن کاملGender, mutant p53 and PML: A growing “affaire” in tumor suppression and oncogenesis
Positioning of the cell division plane is critically important for tissue morphogenesis and architecture. 1 it is therefore not surprising that mitotic spindle orientation must be tightly regulated in living tissues, a phenomenon that is also observed in cells cultured in vitro. Because of the amenability of cultured cells to molecular and physical manipulation, many investigators have used suc...
متن کاملTherapeutic S and G2 checkpoint override causes centromere fragmentation in mitosis
Positioning of the cell division plane is critically important for tissue morphogenesis and architecture. 1 it is therefore not surprising that mitotic spindle orientation must be tightly regulated in living tissues, a phenomenon that is also observed in cells cultured in vitro. Because of the amenability of cultured cells to molecular and physical manipulation, many investigators have used suc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 200 شماره
صفحات -
تاریخ انتشار 2013